1205, 1170, 1065 cm⁻¹; ¹H NMR δ 1.37, 1.58 (3 H × 2, each s, C(CH₃)₂), 2.07–2.57 (6 H, m, H-H-2,2',4,4',5,5'), 2.80 (1 H, s, OH), 4.00 (1 H, t, J = 3 Hz, H-6), 4.14 (1 H, d, J = 4.5 Hz, H-9), 5.86 (1 H, d, J = 4.5 Hz, H-8). Anal. Calcd for C₁₁H₁₆O₅: C, 57.88; H, 7.07. Found: C, 57.69; H, 7.06.

(6R,8R,9R)-8,9-(Isopropylidenedioxy)-7-oxabicyclo-[4.3.0]non-1-en-3-one (11). To a stirred solution of compound 10 (3.69 g, 16.2 mmol) in pyridine (37 mL) were added methanesulfonyl chloride (2.51 mL, 32.4 mmol) and 4-(dimethylamino)pyridine (396 mg, 3.24 mmol). The mixture was stirred for 4 h and then heated at 50 °C for 26 h. The mixture was coevaporated with toluene to remove pyridine completely. The residue was partitioned between CH₂Cl₂ (60 mL) and water (60 mL). The aqueous layer was extracted with CH_2Cl_2 (60 mL × 2). The combined organic layers were dried over Na_2SO_4 and then concentrated. The residue was chromatographed on silica gel (100 g, ethyl acetate/hexane = 1:7), and the fraction corresponding to $R_f 0.44$ (ethanol/toluene = 1:8) was concentrated to give crystals of compound 11 (3.20 g, 94%), mp 107–108 °C: [α]²⁰_D +148.6° (c 1.14); IR v_{max}^{KBr} 2990, 2940, 2860, 1685, 1385, 1375, 1330, 1250, 1235, 1215, 1160, 1085, 1050, 1015 cm⁻¹; ¹H NMR δ 1.40, 1.57 (3 $H \times 2$, each s, C(CH₃)₂), 1.67-2.67 (4 H, m, H-4,4',5,5'), 4.89 (1 H, t, J = 6 Hz, H-6), 5.02 (1 H, d, J = 4.5 Hz, H-9), 5.96 (1 H, d, J = 4.5 Hz, H-8), 6.08 (1 H, s, H-2). Anal. Calcd for $C_{11}H_{14}O_4$: C, 62.85; H, 6.75. Found: C, 62.97; H, 6.68.

(3R,6R,8R,9R)-8,9-(Isopropylidenedioxy)-7-oxabicyclo-[4.3.0]non-1-en-3-ol (12). To a stirred solution of compound 11 (3.20 g, 15.2 mmol) in ethanol (110 mL) at 0 °C was added sodium borohydride (403 mg, 10.6 mmol). After being stirred at the same temperature for 30 min, the reaction mixture was then neutralized with 1 M aqueous HCl solution. The mixture was concentrated and the residue partitioned between CH₂Cl₂ (70 mL) and water (70 mL). The aqueous layer was extracted with CH₂Cl₂ (70 mL \times 3). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was chromatographed on silica gel (140 g, ethyl acetate/hexane = 1:3), and the fraction corresponding to $R_f 0.37$ (ethanol/toluene = 1:8) was concentrated to give crystals of compound 12 (2.79 g, 86%), mp 108–109 °C: $[\alpha]^{21}_{D}$ +122.7° (c 1.18); IR $\nu_{\text{max}}^{\text{KBr}}$ 3260, 3000, 2940, 2880, 1370, 1250, 1200, 1165, 1150, 1050 cm⁻¹; ¹H NMR δ 1.32, 1.50 (3 H × 2, each s, C(CH₃)₂), 1.22-1.55 (2 H, m, H-4,4' or H-5,5'), 1.95-2.35 (2 H, m, H-5,5' or H-4,4'), 2.90-3.30 (1 H, br s, OH), 4.15-4.40 (1 H, m, H-3 or H-6), 4.40-4.70 (1 H, m, H-6 or H-3), 4.79 (1 H, d, J = 4.5 Hz, H-8) 5.74 (1 H, d, J = 4.5 Hz, H-9), 5.86 (1 H, br s, H-2). Anal. Calcd for $C_{11}H_{16}O_4$: C, 62.25; H, 7.60. Found: C, 62.39; H, 7.50.

(1S,3R,6R,8R,9R)- and (1R,3R,6R,8R,9R)-8,9-(Isopropylidenedioxy)-7-oxabicyclo[4.3.0]nonan-3-ol (13 and 14). A solution of compound 12 (2.79 g, 13.1 mmol) in ethanol (40 mL) was hydrogenated in the presence of Raney nickel T-4 under atmospheric hydrogen pressure for 18 h. The catalyst was removed with a Celite pad and then the catalyst was washed with ethanol. The combined filtrate and washings were concentrated. The residue was chromatographed on silica gel (110 g, ethyl acetate-/hexane = 1:4). The fraction corresponding to $R_f 0.27$ (ethanol/hexane = 1:8) was concentrated to give crystals of compound 13 (2.34 g, 83%), mp 122-123 °C. The fraction corresponding to $R_f 0.23$ was concentrated to give crystals of compound 14 (0.341 g, 12%), mp 74–76 °C. 13: $[\alpha]^{22}$ –3.7° (c 1.28); IR ν_{\max}^{KBr} 3470, 2960, 2940, 1385, 1375, 1260, 1205, 1170, 1060 cm $^{-1};$ 1H NMR δ 1.30, 1.49 (3 H \times 2, each s, C(CH₃)₂), 1.50-2.50 (7 H, m, H-1,2,2',4,4',5,5', 2.59 (1 H, br s, OH), 4.05 (1 H, t, J = 2.5 Hz, H-6), 4.20 (2 H, br d, J = 4 Hz, H-3,9), 5.78 (1 H, d, J = 4 Hz, H-8). Anal. Calcd for $C_{11}H_{18}O_4$: C, 61.66; H, 8.47. Found: C, 61.89; H, 8.33. 14: $[\alpha]^{23}_{D}$ +15.2° (c 0.80); IR ν_{max}^{KBT} 3420, 3000, 2950, 2880, 1460, 1380, 1270, 1250, 1210, 1170, 1130, 1110, 1090 cm⁻¹; ¹H NMR (400 MHz) δ 1.33, 1.53 (3 H × 2, each s, C(CH₃)₂), 1.30-1.51, 2.05-2.17 (5 H, 3 H, each m, H-1,2,2',4,4',5,5', OH), 3.66 (1H, dt, $J_{1,6} = J_{5ax,6} = 10.7$ Hz, $J_{5eq,6} = 4.4$ Hz, H-6), 3.71–3.79 (centered at δ 3.75, 1 H, m, H-3), 4.55 (1 H, t, $J_{1,9} = J_{8,9} = 3.9$ Hz, H-9), 5.84 (1 H, d, $J_{8,9} = 3.9$ Hz, H-8). Anal. Calcd for $C_{11}H_{18}O_4$: C, 61.66; H, 8.47. Found: C, 61.91; H, 8.35.

(1S,6R,8R,9R)-8,9-(Isopropylidenedioxy)-7-oxabicyclo-[4.3.0]nonan-3-one (3). To a stirred solution of the alcohol 13 (40.6 mg, 0.19 mmol) in CH₂Cl₂ (2 mL) were added pyridinium chlorochromate (61 mg, 0.28 mmol) and molecular sieves (60 mg). After 1 h, the mixture was concentrated. The residue was chromatographed on silica gel (1 g) and the column was eluted with ether. The ethereal fraction corresponding to R_f 0.42 (ethanol/toluene = 1:8) was concentrated to give crystals of the ketone 3 (37.0 mg, 92%), mp 82–84 °C: $[\alpha]^{22}_{D}$ +7.3° (c 0.83); IR $\nu_{\rm max}^{\rm KBr}$ 2990, 2980, 2920, 1715, 1380, 1370, 1250, 1200, 1170, 1145, 1080 cm⁻¹; ¹H NMR δ 1.31, 1.52 (3 H × 2, each s, C(CH₃)₂), 1.85–2.77 (7 H, m, H-1,2,2',4,4',5,5'), 4.33–4.51 (2 H, m, H-6,9), 5.92 (1 H, d, J = 4.5 Hz, H-8). Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 62.48; H, 7.66.

(1*R*,6*R*,8*R*,9*R*)-8,9-(Isopropylidenedioxy)-7-oxabicyclo-[4.3.0]nonan-3-one (15). Compound 14 (23.0 mg, 0.10 mmol) was oxidized with pyridinium chlorochromate (46 mg) in the presence of molecular sieves (50 mg) in CH₂Cl₂ (1 mL) for 10 h. After chromatographic purification on silica gel (1 g), crystals of the ketone 15 (22.7 mg, quantitative) were obtained from the ethereal fraction of R_f 0.67 (ethanol/toluene = 1:8), mp 96.5–98 °C (lit.^{1c,f} mp 98–98.5 °C): $[\alpha]^{17}_D$ -28.8° (c 1.05), [lit.^{1c,f} [α]^{21.5}_D -33.7° (c 1.66)]. The IR and ¹H NMR spectra of compound 15 were identical with those of an authentic sample.^{1c,f}

(1R,3R,6R,8R,9R)-3-(Benzoyloxy)-8,9-(isopropylidenedioxy)-7-oxabicyclo[4.3.0]nonane (16). To a stirred solution of compound 14 (14.5 mg, 0.07 mmol) in pyridine (0.5 mL) at 0 °C was added benzoyl chloride (0.012 mL, 0.1 mmol). After being stirred for 1.5 h at the same temperature, the mixture was concentrated. The residue was partitioned between CH₂Cl₂ (10 mL) and water (10 mL), and the aqueous layer was extracted with CH_2Cl_2 (10 mL \times 2). The combined organic layers were dried over Na₂SO₄ and then concentrated. The residue was chromatographed on silica gel (1.5 g, ethyl acetate/hexane = 1:15), and the fraction corresponding to $R_f 0.32$ (ethanol/toluene = 1:15) was concentrated to give crystals of compound 16 (16.5 mg, 77%), mp 95–96 °C: $[\alpha]^{24}_{D}$ +29.1° (c 0.83); IR ν_{max}^{KBr} 2990, 2980, 2960, 2900, 2870, 1720, 1450, 1385, 1370, 1335, 1320, 1270, 1260, 1245, 1220, 1180, 1165 cm⁻¹; ¹H NMR (400 MHz) δ 1.32, 1.53 (3 H × 2, each s, C(CH₃)₂), 1.47-1.76, 2.21-2.34 (4 H, 3 H, each m, H-1,2,2',4,4',5,5'), 3.73 (1 H, dt, $J_{1,6} = J_{5ax,6} = 10.4$ Hz, $J_{5eq,6} = 3.4$ Hz, H-6), 4.59 (1 H, t, $J_{1,9} = J_{8,9} = 3.4$ Hz, H-9), 5.05 (1 H, tt, $J_{2ax,3} = J_{3,4ax} = 10.7$ Hz, $J_{2eq,3} = J_{3,4eq} = 4.3$ Hz, H-3), 5.88 (1 H, d, $J_{8,9} = 3.4$ Hz, H-8), 7.42-7.61, 8.01-8.12 (3 H, 2 H, OCOC₆H₅). Anal. Calcd for C₁₈H₂₂O₅; C, 67.91; H, 6.97. Found: C, 67.66; H, 6.94.

Acknowledgment. We thank Mr. Akio Takahashi (Keio University) for carrying out the elemental analyses.

Registry No. 4, 2595-05-3; 5, 4495-04-9; 6, 63846-98-0; 7, 113301-73-8; 8 (diast 1), 113273-90-8; 9, 113273-92-0; 10, 113273-93-1; 11, 113273-94-2; 12, 113273-95-3; 13, 113349-53-4; 14, 112531-62-1; 15, 102562-00-5; 16, 113273-96-4; 3, 113349-52-3; 8 (diast 2), 113273-91-9.

Preparation and Characterization of Cleavable Surfactants Based on a Silicon-Oxygen Bond

David A. Jaeger,* Mary Darlene Ward, and Aloke K. Dutta

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Received September 4, 1987

Cleavable (destructible) surfactants are stable under certain conditions but are labile under other, generally mild conditions with respect to cleavage to nonsurfactant products.¹ Thus, they are appropriate for applications in which the presence of a surfactant, after its beneficial action, can lead to any one of several problems, including

^{(1) (}a) Jaeger, D. A.; Finley, C. T.; Walter, M. R.; Martin, C. A. J. Org. Chem. 1986, 51, 3956. (b) Jaeger, D. A.; Martin, C. A.; Golich, T. G. J. Org. Chem. 1984, 49, 4545. (c) Jaeger, D. A.; Frey, M. R. J. Org. Chem. 1982, 47, 311. (d) Cuomo, J.; Merrifield, J. H.; Keana, J. F. W. J. Org. Chem. 1980, 45, 4216. (e) Epstein, W. W.; Jones, D. S.; Bruenger, D.; Rilling, H. C. Anal. Biochem. 1982, 119, 304. (f) Hayashi, Y.; Shirai, F.; Shimizu, T.; Nagano, Y.; Teramura, K. J. Am. Oil Chem. Soc. 1985, 62, 555.

Table I. Stability/Lability Characteristics of 1b at 25 °C^a

entry	medium	additive	$\mathbf{p}\mathbf{H}^{b}$	time	% cleavage ^c
1	D ₂ O	none	7.0	14 days	0
2^d	D_2O	none	7.0	6 h	0
3	D_2O	0.2 M NaHCO ₃	8.3	38 h ^e	0
4	D_2O	$0.2 \text{ M Na}_2 \text{CO}_3$	11.8	38 h ^e	0
5	$\overline{D_2O}$	$0.2 \text{ M } \text{CD}_3 \text{CO}_2 \text{D}$	2.7	4 days	0
6	D_2O	3.3 M DCĺ	-0.5	10 min	70
	2			2 h	100
7	D_2O	0.2 M NaOD	13.3	1.5 h	47
	-			4.7 h	65
8	D_2O	5.0 M KF	9.1	24 h	100
9^d	$D_{2}O$	5.0 M KF	9.1	6 h	100
10	9:1 (v/v) CDCl ₃ -THF	0.1 M <i>n</i> -Bu₄NF		20 min	100

a[1b] = 0.02 M in entries 1–9 and 0.04 M in entry 10. b Calculated for the perprotio systems. c As determined by ¹H NMR analysis; the appearance of 3 was monitored. d Temperature = 50 °C. c The solution was then diluted with D₂O to 0.1 M NaHCO₃ (Na₂CO₃). After an additional 5 days, there was 17% cleavage in entry 3 and 24% in entry 4.

the formation of persistent emulsions. Herein, we report a study of cleavable surfactants 1.² They are based on a silicon-oyxgen bond and have stability/lability characteristics different than those of cleavable surfactants reported previously.¹

The syntheses of 1 have been described.² The critical micelle concentration (cmc) of 1b in 0.01 M NaHCO₃ at 25 °C is 2.8×10^{-5} M. In addition to water, it is also soluble in a number of organic solvents, including $CHCl_3$ and C_6H_6 . The ¹H NMR chemical shifts of several groups within 1b were monitored as a function of concentration in C_6D_6 at 25 °C, and the results are given in Figure 1 for Me₃N and CH_2N ; similar behavior (not shown) was observed for CH_2O , Me_3C , and MeSi. The curves suggest the formation of reversed micelles³ with an apparent cmc of ca. 0.06 M. Downfield shifts on going from micellar to monomeric surfactant in benzene have also been noted for other systems.³

The stability/lability characteristics of 1b were monitored by ¹H NMR and are summarized in Table I. In entries 1-7, lability is with respect to hydrolysis to 2 and 3 (eq 1). Lability is with respect to cleavage to 3 and 4 by KF in water in entries 8 and 9, and by n-Bu₄NF in CH- Cl_3 -THF in entry 10 (eq 2). However, with both fluoride

reagents, 2 rather than 4 was isolated, indicating that the latter had hydrolyzed.⁴ Thus, 1b is stable in water from pH 3-12 for extended periods, but it hydrolyzes outside of this range and is cleaved by F^- in both aqueous and nonaqueous media.

Both the acid- and base-catalyzed hydrolyses of 1b most likely proceed by attack at silicon.⁵ Nucleophilic substitution at carbon is unlikely,⁶ as is E2 elimination, since no CH2=CHN+Me3 X- was detected by 1H NMR.7.8 The cleavage of silyl ethers by F^- under nonaqueous conditions is an established procedure.⁹ The lesser reactivity of hydrated F^- results in a slower reaction of 1b in entries 8 and 9 than in entry 10.10

The catalytic abilities of 1b were assessed in the $KMnO_4$ oxidation of piperonal (5) to piperonylic acid (6). Under micellar/emulsion conditions at 50-60 °C, 1b was only slightly less effective as a catalyst than hexadecyltrimethylammonium bromide (HTABr).² Under phasetransfer conditions in $H_2O-C_6H_6$ mixtures at 50-55 °C, yields of 6 in duplicate runs were 61% and 65% with 1b, 54% and 56% with HTABr, and 12% and 13% without a catalyst. Persistent emulsions complicated the extractive workup of reaction mixtures containing HTABr, but not of those containing 1b.

In summary, 1b has the aggregation and catalytic properties of a typical quaternary ammonium surfactant, but is differentiated by its cleavable nature, which facilitates its use as a micellar/emulsion or phase-transfer catalyst. The stability/lability characteristics of 1b are different than, and complement, those of other cleavable surfactants.1

Experimental Section

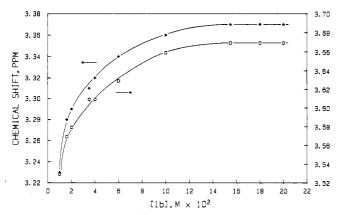
General Procedures and Materials. ¹H NMR spectra (270 MHz) were recorded in CDCl_3 with CHCl_3 (δ 7.20) as internal standard unless noted otherwise. Mass spectra were obtained on a Du Pont 21-110B spectrometer at 70 eV with direct insertion. The cmc of 1b in 0.01 M NaHCO₃ was measured as before.¹¹ All melting points are uncorrected. Elemental analyses were performed by Atlantic Microlab, Atlanta, GA. D₂O (99.88% D, Cal Biochem), DCl-D₂O (20 wt %, 99+% D, Aldrich), and CD₃CO₂D (99.5% D, Bio Rad) were used as received.

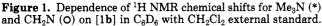
Dodecylmethyl-tert-butylchlorosilane. To a stirred solution of 10 mL of hexane (distilled from LiAlH₄) and 14.0 mL (29.4 mmol) of 2.1 M Me₃CLi in pentane (Aldrich) under N₂ was added 8.06 g (28.4 mmol) of dodecylmethyldichlorosilane (Petrarch) during 15 min. The mixture was refluxed for 3.5 h, filtered

⁽²⁾ Preliminary communication of some of these results: Jaeger, D. A.; Ward, M. D. J. Org. Chem. 1982, 47, 2221.

⁽³⁾ For a discussion and examples, see: Fendler, J. H. Membrane Mimetic Chemistry; Wiley-Interscience: New York, 1982; Chapter 3. (4) Attempts to prepare 4 from dodecylmethyl-tert-butylchlorosilane failed with the procedure used to obtain Me₃CSiMe₂F from Me₃CSiMe₂Cl

⁽Hopf, D. D.; Ö'Brien, D. H. J. Organomet. Chem. 1976, 111, 161).


⁽⁵⁾ Baker, R.; Bott, R. W.; Eaborn, C.; Jones, P. W. J. Organomet. Chem. 1963, 1, 3'


⁽⁶⁾ Crosby, J.; Stirling, C. J. M. J. Chem. Soc. B 1970, 671.

⁽⁷⁾ Ohtsuru, M.; Tori, K.; Lehn, J.-M.; Seher, R. J. Am. Chem. Soc. 1969, 91, 1187.

⁽⁸⁾ Base-catalyzed addition of water to CH_2 =CHN⁺Me₃ X⁻ to give HOCH₂CH₂N⁺Me₃ X⁻ does not occur (Doering, W. von E.; Schreiber, K. C. J. Am. Chem. Soc. **1955**, 77, 514).

⁽⁹⁾ Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190. (10) Clark, J. H. Chem. Rev. 1980, 80, 429.
 (11) Jaeger, D. A.; Robertson, R. E. J. Org. Chem. 1977, 42, 3298.

through a glass frit, and distilled to give 7.64 g (88%) of the title compound: bp 88–90 °C (0.03 mmHg); ¹H NMR δ 1.21 (s, 20 H, (CH₂)₁₀), 0.92 (s, 9 H, (CH₃)₃C), 0.65–0.88 (m, 5 H, CH₃CH₂, CH₂Si), 0.27 (s, 3 H, CH₃Si); IR (neat) 2940 (s), 2865 (s), 1470 (s), 1368 (s), 1255 (s), 820 (s), 778 cm⁻¹ (s); EI HRMS calcd for C₁₇H₃₇²⁸Si³⁵Cl (M) 304.2352, found 304.2352.

[2-(Dodecylmethyl-tert-butylsiloxy)ethyl]trimethyl**ammonium Chloride (1a).** A mixture of 5.04 g (16.6 mmol) of dodecylmethyl-tert-butylchlorosilane, 3.50 g (25.1 mmol) of HOCH₂CH₂N⁺Me₃ Cl⁻ (dried at 80 °C (0.03 mmHg)), 1.65 g (24.2 mmol) of imidazole (dried at 80 °C (0.03 mmHg)), and 40 mL of HCONMe₂ (dried over 4-Å molecular sieves) was held under N₂ at 50 °C for 24 h. Most of the HCONMe₂ was removed by distillation at ca. 20 mmHg, and the residue was dried (2 h at 80 °C (0.03 mmHg)), slurried in CHCl₃, and filtered. The filtrate was rotary evaporated, and the residue was dried and slurryextracted with hexane to give 7.5 g of a viscous oil, which contained 1a, HOCH₂CH₂N⁺Me₃ Cl⁻, and imidazole by ¹H NMR. A sample of 0.96 g was chromatographed on a 73 cm \times 4.5 cm (i.d.) column of alumina (pH 7.4) packed in CHCl₃. Elution started with CHCl₃, and the EtOH content was increased by 10% (v/v) every 500 mL. All eluants contained 1% (v/v) concentrated aqueous NH₃, and 50-75-mL fractions were collected every 12 min and analyzed by TLC on 0.25-mm alumina plates eluted with 1:1 (v/v) EtOH-CHCl₃ and developed with I_2 . Imidazole eluted with 10-20%, 1a with 40%, and HOCH2CH2N+Me3 Cl- with 50% EtOH-CHCl3. The surfactant was dried over Na₂SO₄ in CHCl₃ and then at 90 °C (0.03 mmHg) for 4 h to give 0.63 g (73%) of 1a as a viscous oil: ¹H NMR δ 4.02 (m, 2 H, CH₂O), $\overline{3.80}$ (m, 2 H, CH₂N), ¹² 3.45 $(s, 9 H, (CH_3)_3N)$, 1.18 $(s, 20 H, (CH_2)_{10})$, 0.82 $(m, 12 H, (CH_3)_3C)$, CH_3CH_2), 0.55 (m, 2 H, CH_2Si), 0.02 (s, 3 H, CH_3Si); IR (neat) 3350 (m), 2920 (s), 2845 (s), 1630 (w), 1460 (s), 1248 (m), 1100 (s), 1055 (m), 960 (s), 860 (m), 815 (m), 770 (m), 740 (w), 650 cm⁻¹ (w). The absorptions at 3350 and 1630 $\rm cm^{-1}$ correspond to absorbed water.

[2-(Dodecylmethyl-tert-butylsiloxy)ethyl]trimethylammonium Nitrate (1b). To a solution of 4.67 g (11.5 mmol) of 1a in 30 mL of EtOH was added a solution of 2.00 g (11.8 mmol) of $AgNO_3$ in 20 mL of 1:1 (v/v) H_2O -EtOH. The AgCl was removed by filtration, and after the addition of a solution of 0.25 g of $AgNO_3$ in 5 mL of H_2O , which gave no additional precipitate, the filtrate was rotary evaporated. The residue was slurried in CHCl₃ and filtered, and the filtrate was rotary evaporated and dried for 4 h at 90 °C (0.03 mmHg) to give 3.01 g of crude 1b. This material was chromatographed on a 65 cm \times 4.5 cm (i.d.) column of alumina (pH 7.4) packed in CHCl₃. Elution started with $CHCl_3$, and the EtOH content was increased by 25% (v/v) every 500 mL. All eluants contained 1% (v/v) concentrated aqueous NH₃, and 50-60-mL fractions were collected every 10 min and analyzed as for 1a. Elution with 1:1 (v/v) EtOH-CHCl₃ gave 2.59 g of surfactant, which was recrystallized twice from hexane (-10 °C) to yield, after drying at 80 °C (0.03 mmHg) for 6 h, 1.49 g (30%) of 1b: mp 65–66 °C; ¹H NMR δ 4.04 (m, 2 H, CH₂O), 3.64 (m, 2 H, CH₂N), ¹² 3.30 (s, 9 H, (CH₃)₃N), 1.20 (s, 20 H, (CH₂)₁₀), 0.83 (m, 12 H, (CH₃)₃C, CH₃CH₂), 0.58 (m, 2 H, CH₂Si), 0.03 (s, 3 H, CH₃Si); IR (Nujol) 1250 (m), 1210 (w), 1135 (m), 1095 (s), 960 (s), 860 (m), 825 (s), 770 (m), 732 cm⁻¹ (m); cmc = 2.8 × 10⁻⁵ M in 0.01 M NaHCO₃ (25 °C), and the surface tension above the cmc was ca. 32 dyn/cm. Anal. Calcd for C₂₂H₅₀SiO₄N₂: C, 60.78; H, 11.59. Found: C, 60.82; H, 11.67.

[2-(Dodecylmethyl-tert-butylsiloxy)ethyl]trimethylammonium Tetraphenylborate (1c). To a solution of 0.40 g (1.0 mmol) of 1a in 10 mL of H₂O was added a solution of 0.91 g (2.7 mmol) of NaBPh₄ (Alfa) in 10 mL of H₂O. The resultant precipitate, which formed immediately, was dried (2 h at 25 °C (0.03 mmHg)) and recrystallized three times from MeOH at -10 °C to give 0.13 g (19%) of 1c: mp 175-176 °C; ¹H NMR (CD₃COCD₃ with CH₂Cl₂ (δ 5.63) internal standard) δ 7.34 (br s, 8 H, Ar H_{ortho}), 6.93 (t, J = 7 Hz, 8 H, Ar H_{meta}), 6.78 (t, J =7 Hz, 4 H, Ar H_{para}), 4.30 (m, 2 H, CH₂O), 3.73 (m, 2 H, CH₂N), 3.40 (s, 9 H, (CH₃)₃N), 1.29 (s, 20 H, (CH₂)₁₀), 0.94 (s, 9 H, (CH₃)₃C), 0.88 (t, 3 H, CH₃), 0.73 (m, 2 H, CH₂Si), 0.17 (s, 3 H, CH₃Si). Anal. Calcd for C₄₆H₇₀BNOSi: C, 79.84; H, 10.20. Found: C, 79.71; H, 10.40.

DodecyImethyl-*tert***-butylsilanol (2).** A solution of 73.9 mg (0.170 mmol) of 1b in 50 mL of 1.1 M hydrochloric acid was stirred for 20.5 h at 25 °C and then extracted with three 25-mL portions of hexane. The combined extracts were dried (Na_2SO_4) and yielded 46.6 mg (96%) of 2 as an oil: ¹H NMR δ 1.20 (s, 20 H, (CH₂)₁₀), 0.85 (m, 12 H, (CH₃)₃C, CH₃CH₂), 0.56 (m, 2 H, CH₂Si), 0.01 (s, 3 H, CH₃Si); IR (neat) 3330 (s), 2940 (s), 2860 (s), 1465 (s), 1360 (m), 1250 (s), 1000 (m), 930 (w), 820 (s), 775 (m), 710 cm⁻¹ (w); EI HRMS calcd for C₁₇H₃₈OSi 286.2692, found 286.2705. The same reaction in 1.4 M hydrochloric acid gave a 77% yield of 2 after 3 h at 25 °C.

Under N_2 , a solution of 71.7 mg (0.165 mmol) of 1b in 50 mL of aqueous 1.1 M NaOH was stirred for 18 h at 25 °C, followed by cooling to 0 °C and the addition of 4.0 mL of concentrated hydrochloric acid with resultant pH 8. Thereafter, workup as above gave 36.1 mg (75%) of 2.

A mixture of 28 mg of KOH, 0.04 mL of MeOH, 0.17 mL of H_2O , and 0.12 g (0.39 mmol) of dodecylmethyl-*tert*-butylchlorosilane was stirred at 0 °C for 6 h and then extracted with three 10-mL portions of Et_2O . The combined extracts were dried (Na₂SO₄) and rotary evaporated to give 46 mg (41%) of 2.

¹H NMR Spectra of 1b in C_6D_6 . All glassware was oven- and then flame-dried; C_6D_6 (99.5% D, Aldrich) was dried by distillation from CaH₂ under N₂. A 5-mm NMR tube containing the 1b- C_6D_6 solution was fitted with a coaxial insert (Wilmad WGS-5BL) filled with 1% (v/v) CH₂Cl₂-CDCl₃. Spectra were run at 25 °C, and CH₂Cl₂ was used as external standard (δ 5.29).

Stability/Lability Characteristics of 1b. The following procedure was used for entries 1–9 of Table I. To an oven-dried 5-mm NMR tube was added 5.5 mg (0.013 mmol) of 1b, followed by 0.67 mL of the appropriate solvent. The resultant 0.02 M solution was held at 25 °C, and ¹H NMR spectra were recorded at various times at ambient probe temperature (23 °C) to monitor the decomposition of 1b by comparison of the peak height for the Me₃N⁺ singlet of 1b with that of 3.

Four of the above reaction mixtures used for entries 8 and 9 were combined after 100% cleavage and extracted with four 10-mL portions of Et_2O . The combined extracts were dried (Na₂SO₄) and rotary evaporated to give 11 mg of an oil, which contained 2 and traces of several unidentified components by ¹H NMR.

For entry 10, 0.28 mL of 1.0 M *n*-Bu₄NF (0.28 mmol) in THF containing <5 wt % H_2O (Aldrich) was added to a solution of 0.050 g (0.12 mmol) of 1b in 2.5 mL of CDCl₃. ¹H NMR spectra taken 20 and 40 min later were identical and indicated the complete cleavage of the silicon-oxygen bond, since no signals for the OCH₂CH₂N⁺Me₃ group of 1b were observed.

A solution containing 0.075 g (0.17 mmol) of 1b and 0.36 mL of the above n-Bu₄NF solution (0.36 mmol) in 5.0 mL of CHCl₃ was stirred at 25 °C for 20 min and then rotary evaporated (25 °C). The residue was extracted with four 25-mL portions of hexane (HPLC grade), and the combined extracts were dried (Na₂SO₄) and rotary evaporated (25 °C) to leave 0.058 g of an oil, which contained 2 and traces of several unidentified components by ¹H NMR and IR.

⁽¹²⁾ The assignments for CH₂O and CH₂N are analogous to those for HOCH₂CH₂N⁺Me₃ Br⁻ in D₂O (Birdsall, N. J. M.; Feeney, J.; Lee, A. G.; Levine, Y. K.; Metcalfe, J. C. J. Chem. Soc., Perkin Trans. 2 1972, 1441) and are opposite to those made previously.²

Oxidations of 5 in H_2O . The purification of 5 and the glassware for two parallel reactions in the same oil bath above a single magnetic stirring motor have been described.^{1c} To one flask were added 0.499 g (3.33 mmol) of 5 and 66.0 mg (0.152 mmol) of 1b, and to the other, 0.499 g of 5, followed by the addition of 12.5 mL of H₂O to each. To each stirred system at 50-60 °C was added, during 15 min, a solution of 0.75 g (4.7 mmol) of $KMnO_4$ in 17.5 mL of H_2O . The reaction mixtures then were stirred for 150 min at 50-60 °C and worked up with the published procedure^{1c} on one-half scale. For the system with 1b, foaming was observed before the addition of KMnO4 and during the wash of MnO₂. Thereafter, there was no evidence of foaming or emulsion formation beyond that in the other reaction. From the reaction with 1b, 0.247 g (45%) of 6, mp 229-230 °C (lit.¹³ mp 230-232 °C), was obtained, and from the other, 0.164 g (30%)of 6, mp 227-230 °C. A second reaction with 1b identical with that above gave a 44% yield of 6: mp 229-230 °C. In this reaction, the pH of the reaction mixture was 7 before and during the addition of the KMnO₄ solution and throughout the 150-min period.

Oxidations of 5 in $H_2O-C_6H_6$. Individual reactions were performed in glassware previously described,^{1c} in an oil bath held at 50-55 °C. To the flask were added 1.00 g (6.67 mmol) of 5, 0.131 g (0.302 mmol) of 1b, 25 mL of H_2O , and 50 mL of C_6H_6 . After a solution of 1.5 g (9.5 mmol) of $KMnO_4$ in 35 mL of H_2O was added during 30 min, the reaction mixture was stirred for an additional 150 min and filtered. The aqueous portion of the filtrate was pH 8, and the MnO_2 was washed with 50 mL of H_2O (60 °C) and 20 mL of C_6H_6 . The combined filtrates were shaken vigorously to give an emulsion that persisted for 5 min. Then 0.76 mL of 1.0 M n-Bu₄NF (0.76 mmol) in THF was added, and the mixture was shaken vigorously for 20 min. The aqueous layer was acidified with 10% hydrochloric acid, and the resultant precipitate was collected, washed with H₂O, and dried to give 0.718 g (65%) of 6: mp 229–230 °C. The C_6H_6 layer was dried (MgSO₄) and rotary evaporated to give 0.25 g of an oil, which by ¹H NMR contained predominantly 2 and 5. An identical reaction gave 0.681 g (61%) of 6 with the same melting point.

The above procedure with the substitution of 0.110 g (0.302 mmol) of HTABr for 1b was used for two reactions, which gave 0.623 g (56%) and 0.597 g (54%) of 6: mp 229-230 °C. In these reactions, vigorous shaking of the combined filtrates gave an emulsion that persisted for 2-3 h. For two reactions without surfactant, the above procedure gave 0.146 g (13%) and 0.129 g (12%) of 6: mp 229-230 °C.

Acknowledgment is made to the U.S. Army Research Office, to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the Marathon Oil Co. for support of this research.

Registry No. 1a, 81372-17-0; 1b, 81372-19-2; 1c, 81372-20-5; 2, 81372-22-7; 3 (X = Cl), 67-48-1; 5, 120-57-0; 6, 94-53-1; Me₃CLi, 594-19-4; AgNO₃, 7761-88-8; NaBPh₄, 143-66-8; C₁₂H₂₅(CMe₃)SiCl₂, 18407-07-3; C₁₂H₂₅(Me)Si(CMe₃)Cl, 81372-21-6.

(13) Gulland, J. M.; Macrae, T. F. J. Chem. Soc. 1932, 2231.

A Convenient and Highly Chemoselective Method for the Reductive Acetylation of Azides

Terry Rosen,*[†] Isabella M. Lico, and Daniel T. W. Chu*

Anti-infective Research Division, Abbott Laboratories, Abbott Park, Illinois 60064

Received October 9, 1987

Results and Discussion

The reduction of azides to amines is an important and widely used reaction in organic synthesis.¹ It is especially useful because of the ease of synthesis and high stereose-

[†]Current address: Medicinal Chemistry Department, Central Research, Pfizer Inc., Groton, CT 06340.

Table I. Reductive Acylation of Azides with Thioacetic

azide (1) ¹³	% yield of acetamide (2) 84 77	mp (lit. mp), °C 108-110
NCO2 ^t Bu		108-110
NCO ^t Bu	77	
N ₃	••	oil
	92	6264
CH3(CH2)8N3	77	oil
N ₃	65	104 (104) ¹⁴
CH ₂ N ₃	91	58-60 (60)14
N ₃	73	88-90
№;ÇН₂ NCO ^{g.} Ви о́SO₂CH₃	70	oil
	$ \begin{array}{c} $	$ \begin{array}{c} $

lectivity associated with the preparation of the precursor azides. Thus, the reduction represents a pivotal step in a stereoselective sequence for the preparation of amines. Several methods and reagents are available for this transformation that is often carried out by catalytic hydrogenation^{2,7} or by treatment with lithium aluminum hydride.³ Other known procedures include $H_2S/$ pyridine/H₂O,⁴ transfer hydrogenation,⁵ Ph₃P,⁶ H₂/Lindlar catalyst,⁷ Cr(II)/H⁺,⁸ and Na₂S/Et₃N/MeOH.⁹ Most recently, there have been reports utilizing stannous chloride/MeOH¹⁰ and NaBH₄/THF/MeOH.¹¹ The large number of reagents that have been employed to achieve this transformation is related to a lack of chemoselectivity or relatively vigorous conditions often associated with some of these methods.

In this paper, we report a convenient and highly chemoselective reduction of azides that occurs with concomitant acetylation to give the corresponding acetamide (eq

(3) (a) Brimacombe, J. S.; Bryan, J. G. H.; Husain, A.; Stacey, M.; Tolley, M. S. Carbohydr. Res. 1967, 3, 318. (b) Bose, A. K.; Kistner, J. F.; Farber, L. J. Org. Chem. 1962, 27, 2925. (c) Boyer, J. H. J. Am. Chem. Soc. 1951, 73, 5865.

(4) Adachi, T.; Yamada, Y.; Inoue, I.; Saneyoshi, M. Synthesis 1977, 45.

(5) Gartiser, T.; Selve, C.; Delpuech, J. J. Tetrahedron Lett. 1983, 24, 1609.

(6) Vaultier, M.; Knouzi, N.; Carrie, R. Tetrahedron Lett. 1983, 24, 763.

(7) Corey, E. J.; Nicolaou, K. C.; Balanson, R. D.; Machida, Y. Synthesis 1975, 590.

(8) (a) Kirk, D. N.; Wilson, M. A. J. Chem. Soc., Chem. Commun.
1970, 64. (b) Kondo, T.; Nakai, H.; Goto, T. Tetrahedron 1973, 29, 1801.
(9) Belinka, B. A.; Hassner, A. J. Org. Chem. 1979, 44, 4712.

(10) Maiti, S. N.; Singh, M. P.; Micetich, R. G. Tetrahedron Lett. 1986, 27, 1423.

(11) Soai, K.; Yokoyama, S.; Ookawa, A. Synthesis 1986, 48.

 ⁽a) Sheradsky, T. In The Chemistry of the Azido Group; Patai, S., Ed.; Interscience Publishers: New York, 1971; Chapter 6.
 (b) Schröter, R. In Houben-Weyl, Methoden der Organischen Chemie, 4th ed.; Müller, E., Ed.; Georg Thieme Verlag: Stuttgart, 1957; Vol. 11/1, p 539.
 (c) Grundmann, C. In Houben-Weyl, Methoden der Organischen Chemie, 4th ed.; Müller, E., Ed.; Georg Thieme Verlag: Stuttgart, 1965; Vol. 10/3, p 822.

⁽²⁾ Mungall, W. S.; Greene, G. L.; Heavner, G. A.; Letsinger, R. L. J. Org. Chem. 1975, 40, 1659.
(3) (a) Brimacombe, J. S.; Bryan, J. G. H.; Husain, A.; Stacey, M.;